线性规划之单纯形法(2)
AI_LX
2021-02-01 10:19:11
14
收藏
分类专栏:
计算理论与神经科学
版权声明:本文为博主原创文章,遵循
CC 4.0 BY-SA
版权协议,转载请附上原文出处链接和本声明。
本文链接:
https://blog.csdn.net/AI_LX/article/details/113499221
版权
点赞
评论
分享
x
海报分享
扫一扫,分享海报
收藏
打赏
打赏
AI_LX
你的鼓励将是我创作的最大动力
C币
余额
2C币
4C币
6C币
10C币
20C币
50C币
确定
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
【
线性规划
的
单纯形法
】思维导图
06-20
运筹学课程总结之后绘制的思维导图
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
相关推荐
运筹学第一章:
线性规划
及
单纯形法
.pdf
08-06
本资源是运筹学教程第5版第一章的一个学习笔记,主要总结了
线性规划
问题的单纯形解法。顺便介绍了matlab求解
线性规划
问题的两个方法。
单纯形法
求解
线性规划
Matlab实现
04-04
Matlab向量化编程实现,代码非常简洁(除了注释只有36行,和算法步骤很匹配,熟悉向量化编程的话非常易读懂),最大的好处除了得到最优解和最优目标函数值之外,还能把每一步的单纯形表数据保存下来,直接就能得到和笔算一样的单纯形表,配例还给出了将单纯形表写入Excel的代码。
线性规划
-
单纯形法
-窗体实现(python)
03-27
python窗体实现
线性规划
中的
单纯形法
,其中包含一个主要实现单纯形表算法的LPtable.py和实现tkinter窗体输入的test1.py。使用时直接在后者中点运行即可。
单纯形法
求解
线性规划
显示所有步骤 详细步骤 详细过程
03-24
使用Mathematica求解
线性规划
,显示每一个步骤,方便进行题目验算,本程序实现了blend规则,自动求解
线性规划
问题,输入单纯形表,输出详细过程
1.
线性规划
及
单纯形法
01-20
线性规划
及
单纯形法
系统讲述了单纯刑法的各种揭发和技巧
运筹学课件
线性规划
运筹学课件
线性规划
及
单纯形法
运输问题
05-20
第一章
线性规划
及
单纯形法
线性规划
:
线性规划
(Linear Programming简称LP)是运筹学的一个重要分支,也是运筹学中理论最成熟,应用最广泛的方法之一。自1947年丹捷格提出一般
线性规划
问题的求解方法--
单纯形法
之后,
线性规划
已被广泛地应用于解决经济管理和工业企业中的实际问题。 第二章
线性规划
的对偶问题及灵敏度分析 基本要求: 了解对偶问题的特点; 熟悉互为对偶的问题之间的关系; 掌握对偶规划的理论和性质; 掌握对偶
单纯形法
; 熟悉灵敏度分析的概念和内容。 第三章 运输问题 基本要求: 了解运输问题的特点; 掌握表上作业法及其在产销平衡运输问题的求解中的应用; 掌握产销不平衡运输问题的求解方法。 第四章 整数规划 基本要求: 了解整数规划决策问题的特点 熟悉分枝定界法和割平面法的原理及其应用 理解0-1规划及其求解方法--隐枚举法 掌握指派问题及其求解方法--匈牙利法 第五章 图与网络分析 基本要求: 了解图论的相关概念; 掌握最短路问题及其求解方法; 掌握最大流问题及其求解方法。 掌握最小费用流问题及其求解方法。
单纯形法
求解
线性规划
(C++)程序
07-24
单纯形法
求解简易的
线性规划
详细可以查看https://blog.csdn.net/little_cats/article/details/81189794
4运筹学——
线性规划
单纯形法
04-19
4运筹学——
线性规划
单纯形法
.ppt
python
单纯形法
解
线性规划
问题
04-09
基于python的解
线性规划
问题程序代码,适用环境为python3.6
python中
线性规划
中的
单纯形法
、scipy库与非
线性规划
求解问题
12-21
单纯形法
、scipy库与非
线性规划
求解问题
单纯形法
的基本定义大M法求解
线性规划
的原理excel求解Python调用optimize包和scipy求解
线性规划
Python编程实现
单纯形法
对比情况非
线性规划
单纯形法
的基本定义
单纯形法
的基本定义: 一般
线性规划
问题中当线性方程组的变量数大于方程个数,这时会有不定数量的解,而
单纯形法
是求解
线性规划
问题的通用方法。 具体步骤是,从线性方程组找出一个个的单纯形,每一个单纯形可以求得一组解,然后再判断该解使目标函数值是增大还是变小了,决定下一步选择的单纯形。通过优化迭代,直到目标函数实现最大或最小值。 换而言之,
单纯形法
就是秉承“保证每一次迭代比前一次更
论文研究-求解
线性规划
的
单纯形法
的直接方法.pdf
09-07
提出了基于免疫遗传算法的静态环境下移动机器人全局路径规划方法。该方法首先建立机器人工作空间中环境信息的神经网络模型,并利用该模型建立机器人免碰撞路径与神经网络输出的关系,将免碰撞要求和路径最优要求融合成免疫遗传算法的一个简单适应度函数。将抗体选择概率表示成一个基于抗体矢量距和抗体浓度的融合函数,同时保证了抗体的多样性和成熟收敛。通过仿真,并与遗传算法相比,性能有很大提高,证明了该全局路径规划方法的正确性和有效性。
线性规划
单纯形法
的matlab程序
04-04
线性规划
单纯形法
的matlab程序,加入松驰变量,化为标准型,得到
Python求解
线性规划
问题_两阶段法实现的
单纯形法
05-09
Python求解
线性规划
问题_两阶段法实现的
单纯形法
,包括.py和.ipynb两种格式,用Jupyter Notebook打开.ipynb或者用Python软件打开.py都可成功运行,压缩包中包括测试数据,代码可输出唯一解,无穷多解,无界解,无解四种情况。
运筹学-
单纯形法
解
线性规划
的计算机模拟
01-27
大学时的一个大作业,内容包括
单纯形法
的设计思想、设计步骤与源代码(C++)
用VB实现
线性规划
的
单纯形法
03-22
用VB实现
线性规划
的
单纯形法
,包括例子、源程序、可执行文件
线性规划
Python实现:使用库函数和不使用库函数进行
单纯形法
(大M法)
线性规划
12-21
使用库函数和不使用库函数进行
单纯形法
(大M法)
线性规划
单纯形法
的原理使用scipy库进行
单纯形法
线性规划
不使用库函数进行
单纯形法
线
单纯形法
的原理 可以参考:
线性规划
之
单纯形法
【超详解+图解】. 大M法(big M method)是
线性规划
问题的约束条件(=)等式或(≥)大于型时,使用人工变量法后,寻找其初始基可行解的一种方法。 应用
单纯形法
在改进目标函数的过程中,如果原问题存在最优解,必然使人工变量逐步变为非基变量,或使其值为零。否则,目标函数值将不可能达到最小或最大。在迭代过程中,若全部人工变量变成非基变量,则可把人工变量所在的列从单纯形表中删去,此时便找到原问题的一个初始基可行解。若此基
【
线性规划
的图解法】思维导图
06-20
运筹学课程总结之后绘制的思维导图
VS
2
010 下用C++解
线性规划
问题(
单纯形法
)
10-12
用
单纯形法
解
线性规划
问题,通过C++编程实现,为visual stdio
2
010下的win3
2
程序,只需输入目标函数类型及初始矩阵,即可求得最优解!
线性规划
之
单纯形法
【超详解+图解】
weixin_34138255的博客
06-30
8408
1.作用
单纯形法
是解决
线性规划
问题的一个有效的算法。
线性规划
就是在一组线性约束条件下,求解目标函数最优解的问题。
2
.
线性规划
的一般形式 在约束条件下,寻找目标函数z的最大值。 3.
线性规划
的可行域 满足
线性规划
问题约束条件的所有点组成的集合就是
线性规划
的可行域。若可行域有界(以下主要考虑有界可行域),
线性规划
问题的目标函数最优解必然在可行域的顶点上达到最优。 ...
©️2020 CSDN
皮肤主题: 鲸
设计师:meimeiellie
返回首页