AI理论知识基础(22)-逻辑斯蒂映射-伪随机数

此外, 逻辑斯蒂(logistic)回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等。例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。这里的因变量就是是否胃癌,即“是”或“否”,为两分类变量,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。通过logistic回归分析,就可以大致了解到底哪些因素是胃癌的危险因素。
  logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于他们的因变量不同,其他的基本都差不多,正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalized linear model)。这一家族中的模型形式基本上都差不多,不同的就是因变量不同,如果是连续的,就是多重线性回归,如果是二项分布,就是logistic回归,如果是poisson分布,就是poisson回归,如果是负二项分布,就是负二项回归,等等。只要注意区分它们的因变量就可以了。
  logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最为常用的就是二分类的logistic回归。
  logistic回归的主要用途:一是寻找危险因素,正如上面所说的寻找某一疾病的危险因素等。二是预测,如果已经建立了logistic回归模型,则可以根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大。三是判别,实际上跟预测有些类似,也是根据logistic模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。
   逻辑斯蒂映射的形式为

x_(n+1)=ax_n(1-x_n),

其中a是参数,当a>=3.569946时,x的值不再振荡,进入混沌,在此之前,x的值处于稳定状态,a值较小时,稳定在某个固定值,较大时,稳定在某个周期内
在这里插入图片描述
因此,利用a>=3.569946时,可以产生伪随机数,因为此时x值不稳定,无法预测。具体原理如下 :

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 鲸 设计师:meimeiellie 返回首页