AI理论知识整理(14)-矩阵的秩
AI_LX
2020-03-15 19:34:44
125
收藏
分类专栏:
计算理论与神经科学
版权声明:本文为博主原创文章,遵循
CC 4.0 BY-SA
版权协议,转载请附上原文出处链接和本声明。
本文链接:
https://blog.csdn.net/AI_LX/article/details/104884316
版权
点赞
评论
分享
x
海报分享
扫一扫,分享海报
收藏
打赏
打赏
AI_LX
你的鼓励将是我创作的最大动力
C币
余额
2C币
4C币
6C币
10C币
20C币
50C币
确定
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
矩阵
运算
-
AI
及深度学习
04-27
矩阵
运算
-
AI
及深度学习中使用到的
矩阵
运算,是所有的运算,很齐全
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
相关推荐
矩阵
论(零):线性代数基础知识
整理
(3)——
矩阵
的
秩
与向量组的
秩
niu_123ming的博客
12-27
859
本篇博客承接
矩阵
论(零):线性代数基础知识
整理
(上),主要
整理
秩
相关的结论。 线性方程组的解与向量组的
秩
线性方程组的解 向量组的
秩
零
矩阵
的判定定理 关于
秩
的重要结论(结合向量组的
秩
、分块
矩阵
的
秩
的方法进行总结)
矩阵
的
秩
与向量组的
秩
的关系 常用
矩阵
秩
相关的等式和不等式 ∣r(A)−r(B)∣⩽r(A±B)⩽r(A)+r(B)|r(A)
-
r(B)|\leqslant r(A\pm B...
矩阵
论(零):线性代数基础知识
整理
(2)——
矩阵
的
秩
与向量组的
秩
niu_123ming的博客
09-14
1349
本篇博客承接上篇
矩阵
论(零):线性代数基础知识
整理
(上),主要
整理
秩
相关的结论。 线性方程组的解与向量组的
秩
线性方程组的解 向量组的
秩
关于
秩
的重要结论(结合向量组的
秩
和
矩阵
的
秩
进行总结)
矩阵
的
秩
与向量组的
秩
的关系 常用的
秩
的等式和不等式 一些重要推论 零
矩阵
的判定定理 线性方程组的解与向量组的
秩
线性方程组的解(初步讨论) 对任意线性方程组Ax=bAx=bAx=b,其中A...
AI
人工智能专业词汇集
weixin_33748818的博客
08-01
1699
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客、论文、专家观点等内容上已经积累了超过两年多的经验。期间,从无到有,机器之心的编译团队一直在积累专业词汇。虽然有很多的文章因为专业性我们没能尽善尽美的编译为中文呈现给大家,但我们一直在进步、一直在积累、一直在提高自己的专业性。两年来,机器之心编译团队
整理
过翻译词汇对照表「红宝书」,编辑个人也
整理
过...
Python学习路线人工智能线性代数知识点汇总
weixin_30587025的博客
11-16
60
人工智能和数据分析相关的线性代数知识。比如什么是矢量,什么是
矩阵
,
矩阵
的加减乘除。
矩阵
对角化,三角化,
秩
,QR法,最小二法。等等 矢量: 高中数学中都学过复数,负数表达式是: a+bi 复数实际上和二维的矢量是异性同构的。所谓异性同构,是一个很严格的数学定义,这里不是重点,不做介绍。我们可以近似的把它理解为本质是一样的,只是外形不同,就如正直的绅士和善良的乞丐那样。唯一的不...
低
秩
恢复算法(图像去噪)_米米米米粒口红_新浪博客
五月五Amber
12-09
114
声明:本博客为整料
整理
,引用的地方均有注明。如需转载,请注明出处! 低
秩
矩阵
恢复算法 概述 近几年,低
秩
矩阵
恢复(LRMR)广泛用于图像处理用途图像恢复,比如去噪、去模糊等。一幅清晰的自然图像其数据
矩阵
往往是低
秩
或者近似低
秩
的,但存在随机幅值任意大但是分布稀疏的误差破坏了原有数据的低
秩
性。低
秩
矩阵
恢复是将退化图像看做一组低维数据加上噪声形成的,因此退化前的数据就可以通过低
秩
矩...
矩阵
论(五):
矩阵
的正定性
niu_123ming的博客
11-14
1万+
最近学习凸优化理论,最速下降方法中有个二次范数的概念,涉及到正定
矩阵
的种种性质,牛顿下降方法中的牛顿方向和收敛性证明也用到
矩阵
的正定性。对
矩阵
正定性的研究用特征值分解比较方便,正好前面的博客
整理
过特征值分解的内容,这篇博客就梳理一下
矩阵
正定性的常用知识~~ 线性代数基础知识(上) 线性代数基础知识(下) 广义逆
矩阵
矩阵
分解——从Schur分解、特征值分解到奇异值分解
矩阵
的正定性及其性质 ...
矩阵
论(零):线性代数基础知识
整理
(4)——线性空间与线性变换
niu_123ming的博客
09-25
3981
本篇博客是线性代数的基础
理论知识
下篇,限于篇幅,不会把所有定义都罗列出来,而是将
整理
的重点放在定理和结论上(当然有些必要的定义还是会说明的),对于最基础的概念(如什么是
矩阵
、行列式的定义及基本计算方法、
矩阵
的基本运算等等)不清楚的童鞋可以参考线性代数常用基本知识
整理
。 本篇博客的上篇是
矩阵
论(零):线性代数基础知识
整理
(上)。 为更具一般性,讨论复
矩阵
和复向量,向量如无特别说明均为列向量 本篇博客...
矩阵
论(三):
矩阵
分解—从Schur分解、特征值分解EVD到奇异值分解SVD(上)
niu_123ming的博客
09-26
1万+
本篇博客针对三种联系十分紧密的
矩阵
分解(Schur分解、特征值分解、奇异值分解)依次介绍,它们的关系是Schur→EVD→SVDSchur\rightarrow{}EVD\rightarrow{}SVDSchur→EVD→SVD,也就是说由Schur分解可以推导出EVD,再推导出SVD。推导所需基础线性代数知识(尤其是特征值方面的)请参考线性代数基础知识(上)以及线性代数基础知识(下)。 Sch...
BAT机器学习面试1000题系列(第1~305题)
结构之法 算法之道
09-28
44万+
BAT机器学习面试1000题系列
整理
:July、元超、立娜、德伟、贾茹、王剑、AntZ、孟莹等众人。本系列大部分题目来源于公开网络,取之分享,用之分享,且在撰写答案过程中若引用他人解析则必注明原作者及来源链接。另,不少答案得到寒小阳、管博士、张雨石、王赟、褚博士等七月在线名师审校。 说明:本系列作为国内首个
AI
题库,首发于七月在线实验室公众号上:julyedulab,并部分更新...
【人工智能】未来企业建设
AI
需三大平台;仅靠算法不能落地智能,企业需要
AI
核心系统
产业智能官
01-27
5465
近日,由极客邦科技、InfoQ中国主办的“
AI
Con人工智能与机器学习技术大会”在京举行。第四范式联合创始人、首席架构师胡时伟应邀出席并发表主题演讲。他认为,未来企业真正需要的不再是单个算法或者解决方案,而是可以基于自身数据,自动生成
AI
能力的企业
AI
核心系统。演讲中,胡时伟还分享了企业构建自主
AI
能力的最佳路径。以下为演讲全文,略有删减:随着
AI
技术的发展,语音、图像技术成功为某些业务场景提供了
Neural Approaches to Conversational
AI
Question Answering(问答,任务型对话,闲聊)
图灵与对话
01-28
3517
摘要 本文概述了最近几年开发的对话式
AI
神经方法。 我们将对话系统分为三类:(1)问答代理,(2)面向任务的对话代理和(3)聊天机器人。 对于每个类别,我们将使用特定的系统和模型作为案例研究,对当前最先进的神经方法进行回顾,画出它们与传统方法之间的联系,并讨论已取得的进展和仍面临的挑战。 Chapter 1 Introduction 开发一种智能对话系统1,不仅可以模拟人类对话...
人工智能领域专业术语合集
qq_41184910的博客
09-17
299
人工智能专业术语 文章目录人工智能专业术语Letter ALetter BLetter CLetter DLetter ELetter FLetter GLetter HLetter ILetter JLetter kLetter LLetter MLetter NLetter OLetter PLetter QLetter RLetter SLetter TLetter ULetter VLetter WLetter XLetter YLetter Z Letter A Return 英文/缩写
总结机器学习中的线性代数和
矩阵
论基础
小树屋
06-20
976
目录线性变换线性空间Ax=b的解空间不构成线性子空间
矩阵
[向量]空间子空间的加和交4个基本子空间A=CR分解,行
秩
等于列
秩
几个性质子空间投影最小二乘问题分析角度看最小二乘问题应用:线性回归(摘自PRML P
14
3)几何解释多重共线性缺陷行列式和逆最基本的性质行列式表示
矩阵
组成的体积行列式算法逆
矩阵
克拉默法则正交
矩阵
旋转
矩阵
与正交变换反射
矩阵
A=QR与Gram
-
schmitt正交化应用:信号处理中的变换特征值与特征向量特征值分解实对称
矩阵
的特征值分解谱定理Spectral Theorem主轴定理实对称
矩阵
的谱
人工智能在医学影像中的研究与应用
weixin_45585364的博客
03-26
1万+
人工智能在医学影像中的研究与应用韩冬, 李其花, 蔡巍, 夏雨薇, 宁佳, 黄峰沈阳东软医疗系统有限公司,辽宁 沈阳 110167慧影医疗科技(北京)有限公司,北京 10...
AI
—常用数学知识总结
huxiutao的博客
02-18
987
一、常用数学知识 (以下加粗的是比较重要的,最重要的是梯度和MLE) 常见函数 导数 梯度 Taylor公式 联合概率、条件概率、全概率公式、贝叶斯公式 期望、方差、协方差 大数定理、中心极限定理 最大似然估计(MLE) 向量、
矩阵
的运算
矩阵
的求导 SVD QR分解 二、不容易理解的概念总结 导数就是曲线的斜率,是曲线变化快慢的一个反应。 二阶导数是斜率变化的反应,表现曲线是凹凸性。 梯度...
最新Java JDK 8安装版(Windows 64位)
04-13
资源内容直接来自官网,没有添加任何其它额外内容;旨在便捷地获取最新版的Java JDK(避免因地域原因被限制访问,因网络原因无法稳定有效下载等情况) 友情链接:https://blog.csdn.net/jzycloud/article/det
ai
ls/1
14
123530
Java面试Offer直通车
12-18
<p> <b><span style="font
-
size:
14
px;"></span><span style="font
-
size:
14
px;background
-
color:#FFE500;">【Java面试宝典】</span></b><br /> <span style="font
-
size:
14
px;">1、68讲视频课,500道大厂Java常见面试题+100个Java面试技巧与答题公式+10万字核心知识解析+授课老师1对1面试指导+无限次回放</span><br /> <span style="font
-
size:
14
px;">2、这门课程基于胡书敏老师8年Java面试经验,调研近百家互联网公司及面试官的问题打造而成,从筛选简历和面试官角度,给出能帮助候选人能面试成功的面试技巧。</span><br /> <span style="font
-
size:
14
px;">3、通过学习这门课程,你能系统掌握Java核心、数据库、Java框架、分布式组件、Java简历准备、面试实战技巧等面试必考知识点。</span><br /> <span style="font
-
size:
14
px;">4、知识点+项目经验案例,每一个都能做为面试的作品展现。</span><br /> <span style="font
-
size:
14
px;">5、本课程已经在线下的培训课程中经过实际检验,老师每次培训结束后,都能帮助同学们运用面试技巧,成功找到更好的工作。</span><br /> <br /> <span style="font
-
size:
14
px;background
-
color:#FFE500;"><b>【超人气讲师】</b></span><br /> <span style="font
-
size:
14
px;">胡书敏 | 10年大厂工作经验,8年Java面试官经验,5年线下Java职业培训经验,5年架构师经验</span><br /> <br /> <span style="font
-
size:
14
px;background
-
color:#FFE500;"><b>【报名须知】</b></span><br /> <span style="font
-
size:
14
px;">上课模式是什么?</span><br /> <span style="font
-
size:
14
px;">课程采取录播模式,课程永久有效,可无限次观看</span><br /> <span style="font
-
size:
14
px;">课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化</span><br /> <br /> <br /> <span style="font
-
size:
14
px;background
-
color:#FFE500;"><strong>如何开始学习?</strong></span><br /> <span style="font
-
size:
14
px;">PC端:报名成功后可以直接进入课程学习</span><br /> <span style="font
-
size:
14
px;">移动端:<span style="font
-
family:Helvetica;font
-
size:
14
px;background
-
color:#FFFFFF;">CSDN 学院APP(注意不是CSDN APP哦)</span></span> </p>
©️2020 CSDN
皮肤主题: 鲸
设计师:meimeiellie
返回首页