AI理论知识整理(11)-线性组合线性相关与线性无关
AI_LX
2020-03-14 18:26:44
231
收藏
分类专栏:
计算理论与神经科学
版权声明:本文为博主原创文章,遵循
CC 4.0 BY-SA
版权协议,转载请附上原文出处链接和本声明。
本文链接:
https://blog.csdn.net/AI_LX/article/details/104865209
版权
点赞
评论
分享
x
海报分享
扫一扫,分享海报
收藏
打赏
打赏
AI_LX
你的鼓励将是我创作的最大动力
C币
余额
2C币
4C币
6C币
10C币
20C币
50C币
确定
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
向量组的
线性相关
性.pdf
05-18
考研数学,思维导图总结,参见同济版第五版,向量组的
线性相关
性,第四章知识总结,分享给各位研友,有错误指出
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
相关推荐
AI
学习知识点.xmind
07-15
*
AI
学习知识点* 1. 基础知识 概率论 微积分与逼近论 极限、微分、积分的基本概念 利用逼近的思想理解微积分,利用积分的方式理解概率论 概率论的基础 古典模型 常见的概率分布 大数定理和中心极限定理 协方差和相关系数 最大似然估计和最大后验估计 凸优化 凸优化的基本概念 凸函数 凸集 凸优化问题的标准形式
线性
代数及矩阵
线性
空间及
线性
变化 矩阵的基本概念 状态转移矩阵 特征向量 矩阵的相关乘法 矩阵的QR分解 对称矩阵、正交矩阵、正定矩阵 矩阵的SVD分解 矩阵的求导 矩阵的映射和投影 数据分析 常数e gini系数 导数 梯度 梯度下降 信息熵与组合数 Taylor 牛顿法 2. Python高级应用 容器 列表:list 元组:tuple 字典:dict 数组:Array 切片 列表推导式 浅拷贝和深拷贝 函数 lambda表达式 递归函数及递归优化 常用内置函数/高级函数 项目案例: 约瑟夫环问题 常用库 时间库 并发库 科学计算库 Matplotlib可视化会图库 锁和线程 多线程变成 3. 机器学习 机器学习 理论概述 督导学习 逻辑回归 Softmax分类 条件随机场 支持向量机svm 决策树 随机森林 GBDT 集成学习 非督导学习 高斯混合模型 聚类 PCA 密度估计 LDA 双聚类 降维算法 LSI 数据处理与模型调优 特征提取 数据预处理 数据降维 模型参数调优 模型持久化 模型可视化 优化算法:坐标轴下降法和最小角回归法 数据挖掘关联规则算法 感激模型 4. 深度学习 迈入人工智能的大门 深度学习概述 感知器 BP神经网络 RBF神经网络 Tensorflow概述 Tensorflow常用api Tensorboard可视化技术 源码实现BP与RBF 机器能看的现代技术
-
CNN 初识CNN 模型优化技术 CNN经典模型 机器能读懂文字的技术
-
RNN 初识RNN 走进LSTM 机器能伪造数据的技术
-
GAN 走进GAN 损失函数原理解析 GAN变种 深度学习进阶 目标检测(ssd,yolo) seq2seq seq2seq with Attension 5. 自然语言处理 词 分词 词性标注 词向量 字向量 实体识别 关系抽取 关键词提取 无用词过滤 句 句法分析 语义分析 自然语言 理解 一阶逻辑 文本相似度计算 7. 图像处理 图像基础 图像读写、保存、画图 图像操作及算数运算 图像像素读取、算数运算、ROI区域读取 图像颜色空间运算 图像颜色空间相互转换 图像集合变化 平移、旋转、仿射变化、透视变化等 图像形态学 腐蚀、膨胀、开闭运算等 图像轮毂 长宽、面积、周长、外方园、方向、平均颜色、层次轮图 图像统计学 图像直方图 图像滤波 高斯滤波、均值滤波、双边滤波、拉普拉斯滤波 1. 基础知识 概率论 微积分与逼近论 极限、微分、积分的基本概念 利用逼近的思想理解微积分,利用积分的方式理解概率论 概率论的基础 古典模型 常见的概率分布 大数定理和中心极限定理 协方差和相关系数 最大似然估计和最大后验估计 凸优化 凸优化的基本概念 凸函数 凸集 凸优化问题的标准形式
线性
代数及矩阵
线性
空间及
线性
变化 矩阵的基本概念 状态转移矩阵 特征向量 矩阵的相关乘法 矩阵的QR分解 对称矩阵、正交矩阵、正定矩阵 矩阵的SVD分解 矩阵的求导 矩阵的映射和投影 数据分析 常数e gini系数 导数 梯度 梯度下降 信息熵与组合数 Taylor 牛顿法 2. Python高级应用 容器 列表:list 元组:tuple 字典:dict 数组:Array 切片 列表推导式 浅拷贝和深拷贝 函数 lambda表达式 递归函数及递归优化 常用内置函数/高级函数 项目案例: 约瑟夫环问题 常用库 时间库 并发库 科学计算库 Matplotlib可视化会图库 锁和线程 多线程变成 3. 机器学习 机器学习 理论概述 督导学习 逻辑回归 Softmax分类 条件随机场 支持向量机svm 决策树 随机森林 GBDT 集成学习 非督导学习 高斯混合模型 聚类 PCA 密度估计 LDA 双聚类 降维算法 LSI 数据处理与模型调优 特征提取 数据预处理 数据降维 模型参数调优 模型持久化 模型可视化 优化算法:坐标轴下降法和最小角回归法 数据挖掘关联规则算法 感激模型 4. 深度学习 迈入人工智能的大门 深度学习概述 感知器 BP神经网络 RBF神经网络 Tensorflow概述 Tensorflow常用api Tensorboard可视化技术 源码实现BP与RBF 机器能看的现代技术
-
CNN 初识CNN 模型优化技术 CNN经典模型 机器能读懂文字的技术
-
RNN 初识RNN 走进LSTM 机器能伪造数据的技术
-
GAN 走进GAN 损失函数原理解析 GAN变种 深度学习进阶 目标检测(ssd,yolo) seq2seq seq2seq with Attension 5. 自然语言处理 词 分词 词性标注 词向量 字向量 实体识别 关系抽取 关键词提取 无用词过滤 句 句法分析 语义分析 自然语言 理解 一阶逻辑 文本相似度计算 7. 图像处理 图像基础 图像读写、保存、画图 图像操作及算数运算 图像像素读取、算数运算、ROI区域读取 图像颜色空间运算 图像颜色空间相互转换 图像集合变化 平移、旋转、仿射变化、透视变化等 图像形态学 腐蚀、膨胀、开闭运算等 图像轮毂 长宽、面积、周长、外方园、方向、平均颜色、层次轮图 图像统计学 图像直方图 图像滤波 高斯滤波、均值滤波、双边滤波、拉普拉斯滤波
重温
线性
代数(1)——
线性组合
毛可的专栏
07-11
6198
线性
代数是数学中的基础,也是十分重要的数学
《人工智能》机器学习
-
第5章
线性
回归(一 理论讲解)
不问归期的博客
09-27
723
开发IDE:Anaconda 3(python3.6.5) 回归是由达尔文(Charles Darwin)的表兄弟Francis Galton发明的。Galton于1877年完成了第一次回归预测,目的是根据上一代豌豆种子(双亲)的尺寸来预测下一代豌豆种子(孩子)的尺寸。 Galton在大量对象上应用了回归分析,甚至包括人的身高。他注意到,如果双亲的高度比平均高度高,他们的子女也倾向于比平均高度高,...
人工智能学习之路
u011473714的专栏
06-08
2万+
课程体系阶段一、人工智能基础 - 高等数学必知必会本阶段主要从数据分析、概率论和
线性
代数及矩阵和凸优化这四大块讲解基础,旨在训练大家逻辑能力,分析能力。拥有良好的数学基础,有利于大家在后续课程的学习中更好的理解机器学习和深度学习的相关算法内容。同时对于
AI
研究尤为重要,例如人工智能中的智能很大一部分依托“概率论”实现的。一、数据分析1)常数e2)导数 3)梯度 4)Taylor5)gini系数6)...
计算机专业基础
-
-
人工智能相关基础知识
_天涯__的博客
03-06
1441
机器学习是一种实现人工智能的方法,最基本的做法是,使用算法来解析数据从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。机器学习源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、...
线性
代数笔记
-
线性
空间和矩阵复习
weixin_43252268的博客
03-12
232
复习思路 这次复习
线性
代数是为了给机器学习、数值分析、最优化理论三门课程打基础(这三门课程里面的矩阵使用实在太多、太深)。具体来说是要对行列式、矩阵运算、矩阵分解、
线性
变换里面的基础概念记忆。纸质的笔记仅列出概念,要求自己看到后能理解,算是对复习效果的自测。有时间的话把详细内容放在知乎上,以便以后复习。这次疫情我什么书也没带,因此深切感受到把笔记放在网上的重要性。
线性
代数的问题是解
线性
方程组,记...
人工智能
-
-
-
-
-
-
概述
a_Gainer的博客
05-20
5093
1. 人工智能的基本概念 1.1智能的概念 自然界的四大奥秘之一:智能的发生、物质的本质、宇宙的起源、生命的本质。 智能研究的三大观点: 思维理论:认为智能的核心是思维,人的一切智能都来自大脑的思维活动,人类的一切知识都是人类思维的产物。知识阈值理论:智能行为取决于知识的数量及其一般化的程度,一个系统之所以有智能是因为它具有可运用的知识。将智能定义为
醍醐灌顶之
-
线性
代数
-
矩阵论
weixin_34138056的博客
12-14
456
醍醐灌顶之
-
线性
代数
-
矩阵论 书籍的推荐:
线性
代数:国内的我觉得李尚志的
线性
代数和蓝以中的高代简明教程非常好,概念讲解很通俗易懂,学计算技巧的话建议研读许以超的
线性
代数与矩阵论(第二版),里面有传说中的打洞技巧。龚晟写了本小书《
线性
代数五讲》,观点很高,阅读时需要有一定代数基础。国外的最好的书我认为是strang的Linear Algebra and Its Applicatio...
线性
代数知识点框架
Riess's Blog
05-27
1859
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
【1】
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
线性
代数的学习切入点:
线性
方程组。换言之,可以把
线性
代数看作是在研究
线性
方程组这一对象的过程中建立起来的学科。
线性
方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。关于
线性
方程组的解,有三个问题值得讨论:(1)、方程组是否有解,即解的存在性问题;(2)、方程组如何求解,
机器学习基础01
-
线性
代数
path of conquest
06-18
170
文章目录数学基础内容与学习路线week1:
线性
代数week2:微积分week3:概率论+统计week4:概率论+信息论week5:优化方法学习数学基础的建议标量、向量与矩阵向量的表示向量的一般属性向量运算矩阵定义矩阵运算特殊矩阵
线性相关
性与矩阵的秩
线性组合
与
线性
表示
线性相关
与
线性
无关
矩阵的秩矩阵的范数与迹思考问题向量的范数常用的向量范数矩阵的范数范数有什么用?迹矩阵变换和矩阵分解
线性
变换及其矩阵表...
人工智能中的
线性
代数:如何理解并更好地应用它
喜欢打酱油的老鸟
11-06
333
选自TowardsDataScience 作者:Oleksii Kharkovyna机器之心编译参与:高璇、蛋酱
线性
代数是
AI
专家必须掌握的知识,这已不再是个秘密。如果不掌握应用数学这个领域,你永远就只能是「门外汉」。当然,学习
线性
代数道阻且长。数学,尤其是
线性
代数常与枯燥、复杂和毫无意义的事物联系起来。不过你还可以另辟蹊径。 阅读完本文后,你将了解到:
线性
代数的本质;
线性
...
矩阵论(零):
线性
代数基础知识
整理
(4)——
线性
空间与
线性
变换
niu_123ming的博客
09-25
3981
本篇博客是
线性
代数的基础
理论知识
下篇,限于篇幅,不会把所有定义都罗列出来,而是将
整理
的重点放在定理和结论上(当然有些必要的定义还是会说明的),对于最基础的概念(如什么是矩阵、行列式的定义及基本计算方法、矩阵的基本运算等等)不清楚的童鞋可以参考
线性
代数常用基本知识
整理
。 本篇博客的上篇是矩阵论(零):
线性
代数基础知识
整理
(上)。 为更具一般性,讨论复矩阵和复向量,向量如无特别说明均为列向量 本篇博客...
学习人工智能需要哪些必备的数学基础?
weixin_33806914的博客
12-10
1072
当下,人工智能成了新时代的必修课,其重要性已无需赘述,但作为一个跨学科产物,它包含的内容浩如烟海,各种复杂的模型和算法更是让人望而生畏。对于大多数的新手来说,如何入手人工智能其实都是一头雾水,比如到底需要哪些数学基础、是否要有工程经验、对于深度学习框架应该关注什么等等。那么,学习人工智能该从哪里开始呢?人工智能的学习路径又是怎样的?本文节选自王天一教授在极客时间 App 开设的“人工智能基础课”,...
AI
安全上路小记1
-
概观&
线性
回归
I_am_SX的博客
12-06
89
前言:从上大学开始就从csdn上获取了很多知识,不仅仅是其他大牛的知识讲解,随笔,还包括很多资源。如今,四年过去了,本菜鸡也走上了研究僧的路,很早就想写点东西记录一下自己的学习历程顺便分享一些东西,一直都没有做到。前两天组会轮到我报告,就讲了一点最近学的关于机器学习的基础中的基础。我发现当你需要给别人讲明白一个东西的时候,才是最有效评估你自己学的怎么样的时候。于是有了这第一篇由组会报告的ppt衍生...
组合导航最优综合与滤波方法
-
-
《组合导航原理与应用(西北工业大学出版社)》读书笔记(3)
servent
02-26
3554
组合导航最优综合与滤波方法 惯性导航的主要缺点是定位误差随着时间积累,因而难以长时间的独立工作,解决这一问题的途径主要有两种:提高惯导系统的本身精度,另一种是采用组合导航技术。提高INS精度,依靠新材料、新工艺,提高惯性传感器的精度,这需要花费很大的人力和物力,且惯性传感器精度的提高是有限的。而组合导航利用两个或多个导航和测量系统的互补特性,在现有传感器的基础上,利用导
最新Java JDK 8安装版(Windows 64位)
04-13
资源内容直接来自官网,没有添加任何其它额外内容;旨在便捷地获取最新版的Java JDK(避免因地域原因被限制访问,因网络原因无法稳定有效下载等情况) 友情链接:https://blog.csdn.net/jzycloud/article/det
ai
ls/
11
4123530
©️2020 CSDN
皮肤主题: 鲸
设计师:meimeiellie
返回首页